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1. Description of the package
Wimtrap is a R package that allows to predict the location of transcription factor binding sites (TFBS) in a ‘condition’ -specific’ manner. It aims at

addressing a problematic of major importance in biology: the identification of genes that are regulated by a given transcription factor (TF). A popular

approach consists of performing ‘pattern-matching’ analyses, which make use of the the sequence-specific affinities (motifs) of the transcription

factors. However, relying solely on the detection of motif occurrences to predict binding sites lead to high false discovery rates in organisms such as

plants and metazoans. Wimtrap implements a methodological workflow that exploits ChIP-chip/seq data in order to train models to predict the binding

sites among motif occurrences detected by pattern-matching, in the studied condition (growth stage, tissue, cell type, treatment). These models

integrate various genomic features at location of potential binding sites, such as the location on genes, the phylogenetic conservation of DNA

sequence, the results of digital genomic footprinting or chromatin state features.

2. Installation of Wimtrap
Installing Wimtrap requires at first the installation of BiocManager, if it has not been done yet:

if(!require("BiocManager", quietly = TRUE)){
  install.packages("BiocManager")
}

The package can then be installed by typing the following:

BiocManager::install("RiviereQuentin/Wimtrap",
                     dependencies = TRUE,
                     build_vignettes = TRUE)

If an error occurs, it might be fixed in some cases by installing beforehand the dependence e1071:

if(!require("e1071", quietly = TRUE)){
  install.packages("e1071")
}
BiocManager::install("RiviereQuentin/Wimtrap",
                     dependencies = TRUE,
                     build_vignettes = TRUE)

3. Presentation of the package

mailto:qri@hotmail.be
mailto:matthieu.dc.defrance@ulb.be


3.1 Functions
Wimtrap makes available 4 functions in order to build a predictive model of transcription factor binding sites (TFBS) from data obtained in the training

organism-condition and to obtain predictions of the location of binding sites of the studied transcription factors in the studied organism-condition.

These functions allow to perform the following steps in the workflow of the method:

Steps Function

- Import into the R session of the predictive genomic

data specific to the training and studied organism(s)-

condition(s) 

- Gathering of the transcript models

importGenomicData()

- Location of the potential binding sites of the

training and studied transcription factor(s) along the

genome 

- Genomic feature extraction at the location of the

potential binding sites, performed specifically to the

training (studied) organism-condition for the training

(studied) transcription factor(s) 

- Feature scaling and categorical variables encoding

getTFBSdata()

From the dataset related to the training transcription

factor(s): 

- Labeling of the potential binding sites based on

ChIP-seq/chip data obtained in the training

organism-condition 

- Dataset balancing 

- Machine learning (XG Boosting) 

- Model evaluation

buildTFBSmodel()

From the dataset related to the studied transcription

factor(s): 

- Prediction of the location of the binding sites and

gene targets of the studied transcription factor(s) in

the studied organism-condition

predictTFBS()

In addition, the package includes the carepat()  function that allows to quickly get predictions of location of transcription factor binding sites in

Arabidopsis thaliana and Solanum lycopersicum, in various conditions. This function makes use of pre-build general models obtained from seedling

and flowers of Arabidopsis and ripening fruits of tomato.

3.2 Inputs and outputs
The use of Wimtrap can be further explained through the following diagram, which presents the main inputs to the method (in coral color) and the

outputs of the getTFBSdata() , buildTFBSmodel()  and predictTFBS()  functions. Each input/output is presented with conceptual attributes and

how they can be used by functions implemented by the package. The arrows express relationships of dependence.

ReferenceError: Can't find variable: Float64Array



This diagram illustrates how to practically address a problematic using Wimtrap:

1. Define the transcription factor(s) to study in a given organism and condition (‘Condition’ can be defined here by a growth stage, an organ, a

treatment or any other criterion that allows to designate biological materials with comparable state of the chromatin).

2. Search for predictive genomic data specific to the organism and condition of study in the literature or on dedicated databases such as

ArrayExpress or GEO. These genome-wide data can be related to results of phylogenetic footprinting (identification of conserved elements),

digital genomic footrprinting and the chromatin state (degree of opening, histone modifications and variants, methylation of the cytosine).

These data have to be downloaded in the BED or GTF/GFF format. The score field might be empty. The name field can be used to assign

a category to the genomic intervals.

Transcript models can be automatically downloaded using the importGenomicData()  function from the biomart database.

3. Search for ChIP-chip/seq data related to transcription factor(s) and obtained in the studied organism-condition.

The ChIP-chip/seq data have to be downloaded in the BED or NARROWPEAK format. N.B.: the score field might be empty as the score of

the ChIP-peaks will not be considered.

4. Are ChIP-chip/seq data available in the studied organism-condition?

YES: the training organism-condition corresponds to the training organism-condition (optimal use case). Select all the available ChIP-chip/seq

data for this organism-condition and go to the point 5.

NO: define a training condition-organism different but close from the studied organism-condition. For the training condition-organism, gather

predictive genomic data (a part or all of the genomic data gathered for the studided condition in point 2) and ChIP-seq/chip data related to the

transcription factor(s) (if possible, select only thise related to the studied transcription factors so that TF-specific models can be built). Go to

point the 5.

The ‘granularity’ of the predictive genomic data has to be the same in the training and studied organism-condition. Scores have to be

provided in both organisms-conditions or none. For categorical data, the category of genomic intervals have to be defined similarly in

both organisms-conditions.

5. Obtain the position frequency or weigth matrices (PFMs or PWMs) representing the motifs of the studied transcription factors and the studied

ones (= those for which ChIP-chip/seq data will be considered to train the model), from literature search or dedicated databases such as

Homer, Jaspar, Cis-BP, Transfac or PlantTFDB.

https://www.ebi.ac.uk/arrayexpress
https://www.ncbi.nlm.nih.gov/gds
https://www.ensembl.org/info/website/upload/bed.html
https://www.ensembl.org/info/website/upload/gff.html
https://m.ensembl.org/info/data/biomart/index.html
https://www.ensembl.org/info/website/upload/bed.html
http://genome.ucsc.edu/FAQ/FAQformat.html#format12
http://homer.ucsd.edu/homer/index.htmljas
http://jaspar.genereg.net/
http://cisbp.ccbr.utoronto.ca/
http://gene-regulation.com/pub/databases.html
http://planttfdb.gao-lab.org/


The PWMs/PFMs can be downloaded in the homer, cis-bp, jaspar, transfac, meme or raw PFM format.

This step is not necessary if you want to locate transcription factor potential binding sites using other approaches (c.f matches *

argument of the* getTFBSdata()  function).

6. Obtain the genome sequence of the studied and training organisms.

The genome sequence(s) have to be downloaded in the FASTA format.

The genome sequences can be automatically downloaded using the getTFBSdata()  function from the Ensembl or EnsemblGenomes

database.

7. Get the dataset of potential binding sites of the studied transcription factors: use the importGenomicData()  to import into the session the

predictive genomic data specific to the studied organism-condition and getTFBSdata()  to locate the potential binding sites of the studied

transcription factor(s) and annotate them with features extracted from the imported genomic data.

8. Get the dataset of potential binding sites of the studied transcription factors: use the importGenomicData()  to import into the session the

predictive genomic data specific to the training organism-condition and getTFBSdata()  to locate the potential binding sites of the training

transcription factor(s) and annotate them with features extracted from the imported genomic data.

The pattern-matching can be performed using an external tool (c.f matches  argument of the getTFBSdata()  function) or can be

achieved with Wimtrap using different p-value thresholds (c.f matches  argument of the getTFBSdata()  function).

The genomic features are extracted on windows, centered on the potential binding sites, of three different lenghts that might be set.

Default: 20, 400 and 1000bp. (c.f small_window, medium_window, long_window  arguments of the getTFBSdata()  function)

9. Train by extreme gradient boosting a predictive model based on the ChIP-chip/seq data and the dataset of the potential binding sites of the

training transcription factors using the buildTFBSmodel()  function.

If ChIP-chip/seq data are available in the training organism-condition for the studied transcription factor(s), build a TF-specific model for

each studied transcription factor. A TF-specific model can be obtained when the buildTFBSmodel()  is fed with data related to only on

transcription factor.

For advanced users, other machine learning methods can be implemented based on the ChIP-chip/seq data and the dataset of the

potential binding sites of the training transcription factors using a custom code. The resulting object needs to be of a class that can be

used by the function stats::predict() .

The length of the ChIP-peaks might be adjusted. Default = 400 bp (c.f lengthChIPpeaks  argument of the buildTFBSmodel()
function).

10. Apply the (general or TF-specific) predictive model on the dataset of the potential binding of the studied transcription factor(s) to get the

predictions specific to the organism-condition of interest.

Each potential binding site is associated to a score (from 0 to 1) which can be seen as its likelihood to be a transcription factor binding

site. By default, we recommand to predict as binding sites all the potential binding sites that get a score higher to 0.5.

11. Use the predictions (1) to infer the potential gene targets of the studied transcription factor, (2) to assess the over-representation of potential

binding sites among the promoters of co-regulated genes, (3) to compare the regulatory regions of different genes

4. Example: prediction of the binding sites of CCA1 in the
roots of Arabidopsis thaliana
4.1. Use the carepat()  function to apply a pre-built general
model
Predictions for CCA1 binding sites in roots of Arabidopsis thaliana can be quickly obtained using a pre-built model obtained from seedlings of

Arabidopsis. It is a general model, trained from data related to an extensive set of transcription factors.

CCA1predictions.roots <- carepat(organism = "Arabidopsis thaliana",
                                  condition = "roots",
                                  TFnames = "AT2G46830")#Use the AGI code of CCA1 to retrieve automatically its motif
from PlantTFDB

Predictions in other conditions (non-hair part of roots, flowers, seed coats, heat-shocked seedlings, seedlings exposed to various light treatments) can

be obtained in Arabidopsis using carepat() . It is also possible to study the immature fruits and ripening fruits in Solanum lycopersicum.

In the section 4.2., we will illustrate the full workflow of Wimtrap from scratch and will build a TF-specific model obtained based on data related to

http://homer.ucsd.edu/homer/motif/creatingCustomMotifs.html
http://embnet.ccg.unam.mx/rsat/help.convert-matrix.html
http://embnet.ccg.unam.mx/rsat/help.convert-matrix.html
http://embnet.ccg.unam.mx/rsat/help.convert-matrix.html
http://embnet.ccg.unam.mx/rsat/help.convert-matrix.html
http://jaspar.genereg.net/faq/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp
https://www.ensembl.org/index.htmll
https://ensemblgenomes.org/


CCA1 only.

The output of carepat()  is a data.table  identic to that generated by PredictTFBS() . In the section 4.3., we provide some examples to

manipulate such an output.

4.2. Build and apply a CCA1-specific model

4.2.1 Get the pre-requisites
Search for predictive data related to the studied organism-condition (roots of Arabidopsis)

For 7-days old roots of Arabidopsis thaliana, we could find the results of DNAseI-seq and digital genomic footrprinting on the PlantTFDB

database (Sullivan et al., 2014; Jin et al., 2017). These data will allow to extract genomic features of high predictivity of transcription factor

binding sites. The results of DNAseI-seq consist of the location of regions of open chromatin, which are scored according to their degree of

opening. Digital genomic footprinting is a method that is used to predict binding events on the DNA based on the protective effect for open DNA

of bound proteins against DNAseI cleavage.

We could also find condition-independent data related to the Arabidopsis thaliana species:

the location of conserved non-coding elements along the genome, from 3 different sources (Baxter et al., 2012; Haudry et al., 2013;

Thomas et al., 2007).

the transcript models of Arabidopsis thaliana, which we will download from biomart (Kinsella et al., 2011) using the

importGenomicData()  function.

Search for training data

We did not find any ChIP-seq/chip data obtained from roots of Arabidopsis thaliana: we will have to train a model from a training condition

different from the studied one.

We propose to build a model based on data related to seedlings of Arabidopsis thaliana:

ChIP-seq data about CCA1 in seedlings were published (Nagel et al., 2015): this will allow us to build a TF-specific model.

As for roots, we could find the results of DNAseI-seq and digital genomic footrprinting on the PlantTFDB database (Zhang et al., 2012;

Sullivan et al., 2014; Jin et al., 2017).

Get the Pseudo Weight Matrix (PWM) of the motif of CCA1

CCA1 can bind the evening element, for which a PWM is made available on PlantTFDB (Jin et al., 2017).

Download the collected data

You can download all the data introduced above from the github repository RiviereQuentin/Wimtrap.

if(!require(utils)){
  install.packages(pkgs = "utils")
}
library(utils)
download.file(url = "https://github.com/RiviereQuentin/Wimtrap/raw/main/example.zip",
              destfile = "Wimtrap_ex.zip")
unzip(zipfile = "Wimtrap_ex.zip")

4.2.2. Apply the functions defined in the package
We are now ready to open our R session and apply the Wimtrap workflox to get predictions of the binding sites of CCA1 along the genome in 7-days

old roots of Arabidopsis thaliana.

1. importGenomicData()  to import the genomic data, for the seedlings and the roots of Arabidopsis:

http://plantregmap.gao-lab.org/download_ftp.php?filepath=08-download/Arabidopsis_thaliana/DHS/DHS_Ath_root_7_days.bed
http://plantregmap.gao-lab.org/download_ftp.php?filepath=08-download/Arabidopsis_thaliana/DGF/DGF_Ath_root_7_days.bed
http://plantregmap.gao-lab.org/
https://plants.ensembl.org/biomart/martview/38bb52eb3a8baf556fd902a9cdf0519e
http://plantregmap.gao-lab.org/download_ftp.php?filepath=08-download/Arabidopsis_thaliana/DHS/DHS_Ath_seedling_normal.bed
http://plantregmap.gao-lab.org/download_ftp.php?filepath=08-download/Arabidopsis_thaliana/DGF/DGF_Ath_seedling_7_day_old_Control.txt
http://plantregmap.gao-lab.org/
http://planttfdb.gao-lab.org/motif/Ath/AT2G46830.meme
https://github.com/RiviereQuentin/Wimtrap


library(Wimtrap)

#The file paths to the genomic data, encoded in BED or GTF/GFF files, are input through the `genomic_data` argument.

#Each file is named according to the feature that it allows to define.

#Remark: the chromosomes are named, in the chrom field of the BED files, according to their number. 

#This number might be preceded by the prefix 'chr' (case-insensitive). For chromosome 1,  'chr1', 'CHR1', 'Chr1' 

#or '1' are accepted.

#Remark: the regions described by a file are all assigned to a score of '1' if the score field is empty (cf. CNS).

# As for the genomic intervals that are not included in a file, they are all assigned to a null score.

imported_genomic_data.roots <- importGenomicData(organism = "Arabidopsis thaliana", 
                                                 genomic_data = c(
                                                   DHS = "example/DHS_athal_roots_7_days.bed",
                                                   DGF = "example/DGF_athal_roots_7_days.bed",
                                                   CNS = "example/CNS_athal.bed"
                                                 ))
imported_genomic_data.seedlings <- importGenomicData(organism = "Arabidopsis thaliana",
                                                     genomic_data = c(
                                                      DHS = "example/DHS_athal_seedlings_normal.bed",
                                                      DGF = "example/DGF_athal_seedlings_7_days.bed",
                                                      CNS = "example/CNS_athal.bed"
                                                 ))

2. getTFBSdata()  to build the dataset of potential binding sites of CCA1 both for the 7-days old roots and the seedlings of Arabidopsis thaliana:

locate the matches with the evening element along the genome (default p-value = 0.001), extract the average signal from the predictive genomic

data at location of the matches with the evening elements on centered windows of 3 different lengths (default = 20bp, 400bp and 1000bp) and

finally, scale the extracted features between 0 and 1. To allow better comparison of the genomic features across organisms and conditions, the

scaling is applied after detection of the outliers (\(>median+1.5*Interquartile range\) or \(<median-1.5*Interquartile range\)), whose values are

replaced by \(median+1.5*Interquartile range\) or \(median-1.5*Interquartile range\).

The function will print a summary of the datasets of potential binding sites.

#The motif representing the evening element is encoded in a file in raw pfm format. Other formats are allowed:

#meme, jaspar, transfac, homer and cis-bp.

#You must specify the name of the transcription factor (here CCA1) as it appears in the file giving

#the motif throught the `TFnames` argument.

#The genome sequence of the considered organism(s) might be automatically downloaded if you provide

#their names through the `organism` argument.

#If you provide the genome sequence from a FASTA file, make sure that the chromosomes are named according to their 

number. 

#This number might be preceded by the prefix 'chr' (case-insensitive). For chromosome 1,  'chr1', 'CHR1', 'Chr1' 

#or '1' are accepted.

CCA1data.roots <- getTFBSdata(pfm = "example/PFMs_athal.pfm",
                              TFnames = "CCA1",
                              organism = "Arabidopsis thaliana",
                              imported_genomic_data = imported_genomic_data.roots)
#> [1] "=> CCA1"

#>  seqnames      start               end               width   strand       matchScore       matchLogPval    Proximal

Promoter 

#>  1:52657   Min.   :      88   Min.   :      95   Min.   :8   +:117422   Min.   :0.00000   Min.   :-4.211   Min.   

:0.00000  

#>  2:34815   1st Qu.: 6333525   1st Qu.: 6333532   1st Qu.:8   -: 87485   1st Qu.:0.00533   1st Qu.:-3.664   1st Qu.

:0.00000  

#>  3:39408   Median :11882110   Median :11882117   Median :8   *:     0   Median :0.14035   Median :-3.407   Median 

:0.00000  

#>  4:31394   Mean   :12408940   Mean   :12408947   Mean   :8              Mean   :0.29777   Mean   :-3.467   Mean   



:0.08899  

#>  5:46633   3rd Qu.:17848530   3rd Qu.:17848536   3rd Qu.:8              3rd Qu.:0.57843   3rd Qu.:-3.212   3rd Qu.

:0.00000  

#>            Max.   :30426658   Max.   :30426665   Max.   :8              Max.   :1.00000   Max.   :-3.104   Max.   :

1.00000  

#>                                                                                                                      

#>     Promoter          X5UTR              CDS             Intron            X3UTR           Downstream           Clos

estTTS    

#>  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   AT3G3318

7.1:   199  

#>  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   AT3G3298

0.1:   196  

#>  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000   Median :0.0000   AT1G4012

9.1:   195  

#>  Mean   :0.3938   Mean   :0.02246   Mean   :0.0483   Mean   :0.04672   Mean   :0.01904   Mean   :0.1163   AT1G4039

0.1:   153  

#>  3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   AT5G3267

0.1:   144  

#>  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   AT1G4010

4.1:   140  

#>                                                                                                           (Other)    

:203880  

#>  DistToClosestTTS       ClosestTSS     DistToClosestTSS     DHS_20bp          DGF_20bp          CNS_20bp         DH

S_400bp      

#>  Min.   :0.0000   AT3G33187.1:   198   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min

.   :0.00000  

#>  1st Qu.:0.0000   AT1G40129.1:   197   1st Qu.:0.07426   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st

Qu.:0.00000  

#>  Median :0.2614   AT3G32980.1:   194   Median :0.24387   Median :0.00000   Median :0.00000   Median :0.00000   Med

ian :0.00000  

#>  Mean   :0.2990   AT1G40390.1:   155   Mean   :0.31781   Mean   :0.02378   Mean   :0.03319   Mean   :0.04222   Mea

n   :0.07334  

#>  3rd Qu.:0.4656   AT5G32670.1:   142   3rd Qu.:0.48692   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd

Qu.:0.00000  

#>  Max.   :1.0000   AT4G08097.1:   141   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max

.   :1.00000  

#>                   (Other)    :203880                                                                                

#>    DGF_400bp         CNS_400bp      Matches_400bp      DHS_1000bp        DGF_1000bp        CNS_1000bp      Matches_

1000bp  

#>  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   

:0.0000  

#>  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.

:0.2000  

#>  Median :0.00000   Median :0.0000   Median :0.2759   Median :0.00000   Median :0.00000   Median :0.02434   Median 

:0.4000  

#>  Mean   :0.07124   Mean   :0.1304   Mean   :0.2616   Mean   :0.11625   Mean   :0.10530   Mean   :0.19369   Mean   

:0.4267  

#>  3rd Qu.:0.00000   3rd Qu.:0.1319   3rd Qu.:0.4828   3rd Qu.:0.08138   3rd Qu.:0.03797   3rd Qu.:0.29209   3rd Qu.

:0.6000  

#>  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   

:1.0000  

#> 

CCA1data.seedlings <- getTFBSdata(pfm = "example/PFMs_athal.pfm",
                              TFnames = "CCA1",
                              organism = "Arabidopsis thaliana",
                              imported_genomic_data = imported_genomic_data.seedlings)
#> [1] "=> CCA1"

#>  seqnames      start               end               width   strand      matchScore       matchLogPval    ProximalP



#>  seqnames      start               end               width   strand      matchScore       matchLogPval    ProximalP

romoter 

#>  1:47180   Min.   :      88   Min.   :      95   Min.   :8   +:95711   Min.   :0.00000   Min.   :-4.189   Min.   :

0.00000  

#>  2:30979   1st Qu.: 6308303   1st Qu.: 6308310   1st Qu.:8   -:87501   1st Qu.:0.01629   1st Qu.:-3.647   1st Qu.:

0.00000  

#>  3:35224   Median :11906262   Median :11906270   Median :8   *:    0   Median :0.22762   Median :-3.380   Median :

0.00000  

#>  4:28089   Mean   :12430137   Mean   :12430144   Mean   :8             Mean   :0.31311   Mean   :-3.518   Mean   :

0.08759  

#>  5:41740   3rd Qu.:17937356   3rd Qu.:17937364   3rd Qu.:8             3rd Qu.:0.53120   3rd Qu.:-3.226   3rd Qu.:

0.00000  

#>            Max.   :30426658   Max.   :30426665   Max.   :8             Max.   :1.00000   Max.   :-3.191   Max.   :1

.00000  

#>                                                                                                                      

#>     Promoter          X5UTR              CDS              Intron            X3UTR           Downstream           Clo

sestTTS    

#>  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   AT1G401

29.1:   185  

#>  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   AT3G331

87.1:   177  

#>  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000   Median :0.0000   AT3G329

80.1:   174  

#>  Mean   :0.3854   Mean   :0.02351   Mean   :0.05206   Mean   :0.04573   Mean   :0.01922   Mean   :0.1173   AT1G403

90.1:   150  

#>  3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   AT5G326

70.1:   133  

#>  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   AT5G345

81.1:   133  

#>                                                                                                            (Other)   

:182260  

#>  DistToClosestTTS       ClosestTSS     DistToClosestTSS     DHS_20bp          DGF_20bp          CNS_20bp         DH

S_400bp      

#>  Min.   :0.0000   AT1G40129.1:   187   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min

.   :0.00000  

#>  1st Qu.:0.0000   AT3G33187.1:   176   1st Qu.:0.07661   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st

Qu.:0.00000  

#>  Median :0.2574   AT3G32980.1:   172   Median :0.24837   Median :0.00000   Median :0.00000   Median :0.00000   Med

ian :0.00000  

#>  Mean   :0.2975   AT1G40390.1:   152   Mean   :0.32221   Mean   :0.02091   Mean   :0.08158   Mean   :0.04327   Mea

n   :0.06931  

#>  3rd Qu.:0.4627   AT5G34581.1:   134   3rd Qu.:0.49399   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd

Qu.:0.00000  

#>  Max.   :1.0000   AT5G32670.1:   131   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max

.   :1.00000  

#>                   (Other)    :182260                                                                                

#>    DGF_400bp        CNS_400bp      Matches_400bp      DHS_1000bp       DGF_1000bp       CNS_1000bp      Matches_100

0bp  

#>  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.

0000  

#>  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.

2000  

#>  Median :0.0000   Median :0.0000   Median :0.4000   Median :0.0000   Median :0.0000   Median :0.02434   Median :0.

4000  

#>  Mean   :0.1297   Mean   :0.1328   Mean   :0.3078   Mean   :0.1232   Mean   :0.1824   Mean   :0.19476   Mean   :0.

3738  

#>  3rd Qu.:0.1590   3rd Qu.:0.1404   3rd Qu.:0.4000   3rd Qu.:0.1144   3rd Qu.:0.3096   3rd Qu.:0.29615   3rd Qu.:0.

6000  



6000  

#>  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.

0000  

#> 

3. buildTFBSmodel  to get the predictive classifier and, optionally, evaluate the model.

As we consider only one transcription factor here (CCA1), we will only be able to perform an ‘internal’ validation: balancing of the dataset (we will

randomly select as many potential binnding sites that do not overlap a ChIP-peak of CCA1 in Arabidopsis seedlings than there are potential binding

sites that do overla a ChIP-peak), we will use 80% of the binding sites to build the model and 20% to assess the model. However, if you are considering

a set of training transcripion factors, it is best to select a few for performing an ‘external’ validation (cf. TF4Validation  argument). These ‘validation’

transcription factors will be excluded from the training of the model and, after balancing of their cognate datasets, .

For the purposes of evaluation, the function will:

plot the ROC achieved by the model in comparison with that achieved by the pure pattern-matching (i.e. when considering solely the p-value of

the match). The area under the ROC of the model is written along the Y-axis.

The ROC allows to illustrate the evaluation of the performances of a predictive method according to the minimum score threshold that is used

to predict a potential binding site as a binding site (cf. the ‘prediction score’ for the modeling approach and the ‘p-value of the match’ for the

pattern-matching analysis). The performances are evaluated in terms of sensitivity (Y-axis) and 1-specificity (X-axis), where \

(sensitity=TP/(TP+FN)\) and \(specificity=TN/(TN+FP)\), with TP: true positive = number of ChIP-validated potential binding that have been

correctly predicted as a binding site; FN: false negative = number of ChIP-validated potential binding that have been incorrectly predicted as not

being a binding site; TN: true negative = number of ChIP-invalidated potential binding sites that have been correctly predicted as not being a

binding site; FP: false positive = number of ChIP-invalidated potential binding sites that have been incorrectly predicted as a binding site.

The area under the ROC (AUC) is an appropriate metrics for comparing the performances of predictive methods based on balanced datasets.

Higher the AUC, more performant is a classifier. The AUC is comprised between 0 and 1 (a random guess corresponding to an AUC of 0.5).

plot the feature importance, in terms of gain. The predictive model, trained by extreme gradien boosting, corresponds to an ensembl of decision

trees that collectively ‘vote’ to predict the binding sites: their prediction scores are averaged. The gain of a feature is calculated by summing, on

each decision tree, the increase of accuracy that is obtained on each branch that use this feature to classify the potential binding sites into the

two classes considered (‘binding site’ or ‘not binding site’). The gain is expressed relatively to all the features integrated by the model so that the

total of the feature gains equal to 1.

The features are named as ‘genomicdata_windowlength’, i.e. from the genomic data that have been used to extract the feature (DHS, CNS,..)

and the window length on which they have been extracted (by default 20bp, 400bp or 1000bp). For instance, we will obtain the feature

‘DHS_20bp’ for the feature obtained by averaging the signal of DNAseI-sensitity on the windows of 20bp centered on the potential binding sites.

Noteworthy, the features related to the gene structures (‘Promoter’, ‘CDS’,..) are only named ‘genomicdata’ because we consider only the

structure on whiche the center of the potential binding sites are located (for instance ‘Promoter’ = 1 if the center of the potential binding site is

located on the promoter of the potential gene target; = 0 otherwise).

print on the screen the confusion matrix obtained using a prediction score threshold of 0.5, that gives the FP, FN, TP and TN associated to the

classification of the potential binding sites of the balanced ‘validation’ dataset by the model.

# Name the `ChIPpeaks` argument according to the training transcription factor(s)

CCA1model <- buildTFBSmodel(CCA1data.seedlings, 
                            ChIPpeaks = c(CCA1 = "example/CCA1_athal_seedlings.narrowPeak"),
                            model_assessment = TRUE) 
#> [1]  train-error:0.109347+0.001496   test-error:0.134174+0.004817 

#> Multiple eval metrics are present. Will use test_error for early stopping.

#> Will train until test_error hasn't improved in 20 rounds.

#> 

#> [11] train-error:0.089778+0.002343   test-error:0.125356+0.004523 

#> [21] train-error:0.067427+0.001753   test-error:0.125356+0.002598 

#> [31] train-error:0.051112+0.001105   test-error:0.127661+0.004555 

#> [41] train-error:0.037749+0.000706   test-error:0.129018+0.004126 

#> Stopping. Best iteration:

#> [23] train-error:0.064544+0.001674   test-error:0.124134+0.003921

#> 

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/


#> [23:59:00] WARNING: amalgamation/../src/learner.cc:516: 

#> Parameters: { early_stop_round, print_every_n } might not be used.

#> 

#>   This may not be accurate due to some parameters are only used in language bindings but

#>   passed down to XGBoost core.  Or some parameters are not used but slip through this

#>   verification. Please open an issue if you find above cases.

#> 

#> 

#> [1]  val-error:0.139989  train-error:0.109754 

#> Multiple eval metrics are present. Will use train_error for early stopping.

#> Will train until train_error hasn't improved in 10 rounds.

#> 

#> [11] val-error:0.125339  train-error:0.092660 

#> [21] val-error:0.122626  train-error:0.071361 

#> [23] val-error:0.122626  train-error:0.069326 

#> Performances of the model

#> Confusion Matrix and Statistics

#> 

#>           Reference

#> Prediction   0   1

#>          0 782  99

#>          1 127 835

#>                                          

#>                Accuracy : 0.8774         

#>                  95% CI : (0.8615, 0.892)

#>     No Information Rate : 0.5068         

#>     P-Value [Acc > NIR] : < 2e-16        

#>                                          

#>                   Kappa : 0.7546         

#>                                          

#>  Mcnemar's Test P-Value : 0.07249        

#>                                          

#>             Sensitivity : 0.8603         

#>             Specificity : 0.8940         

#>          Pos Pred Value : 0.8876         

#>          Neg Pred Value : 0.8680         

#>              Prevalence : 0.4932         

#>          Detection Rate : 0.4243         

#>    Detection Prevalence : 0.4780         

#>       Balanced Accuracy : 0.8771         

#>                                          

#>        'Positive' Class : 0              

#>                                          

#> Features importance             Feature         Gain       Cover    Frequency

#>  1:        DGF_400bp 0.7296545394 0.272879268 0.1461824953

#>  2:        DHS_400bp 0.0662213006 0.113760935 0.0828677840

#>  3:        CNS_400bp 0.0321700476 0.074176223 0.0977653631

#>  4:     matchLogPval 0.0315278137 0.116328729 0.0828677840

#>  5:       DGF_1000bp 0.0290440843 0.085742972 0.1098696462

#>  6:       CNS_1000bp 0.0259146524 0.050594416 0.1014897579

#>  7:         DGF_20bp 0.0245975837 0.059559884 0.0856610801

#>  8:       DHS_1000bp 0.0217980795 0.048365570 0.1014897579

#>  9:   Matches_1000bp 0.0115411087 0.015036058 0.0512104283

#> 10:         DHS_20bp 0.0065613470 0.032692689 0.0270018622

#> 11:    Matches_400bp 0.0048036903 0.007917049 0.0270018622

#> 12:         CNS_20bp 0.0045063455 0.029705580 0.0270018622

#> 13:              CDS 0.0034368035 0.032124664 0.0186219739

#> 14:         Promoter 0.0030661531 0.017026684 0.0139664804

#> 15: ProximalPromoter 0.0017786475 0.004499411 0.0074487896

#> 16:            X3UTR 0.0016817976 0.028938733 0.0111731844



#> 16:            X3UTR 0.0016817976 0.028938733 0.0111731844

#> 17:       Downstream 0.0014937469 0.007314459 0.0074487896

#> 18:           Intron 0.0002022588 0.003336675 0.0009310987

#>              Feature         Gain       Cover    Frequency   Importance
#>  1:        DGF_400bp 0.7296545394 0.272879268 0.1461824953 0.7296545394
#>  2:        DHS_400bp 0.0662213006 0.113760935 0.0828677840 0.0662213006
#>  3:        CNS_400bp 0.0321700476 0.074176223 0.0977653631 0.0321700476
#>  4:     matchLogPval 0.0315278137 0.116328729 0.0828677840 0.0315278137
#>  5:       DGF_1000bp 0.0290440843 0.085742972 0.1098696462 0.0290440843
#>  6:       CNS_1000bp 0.0259146524 0.050594416 0.1014897579 0.0259146524
#>  7:         DGF_20bp 0.0245975837 0.059559884 0.0856610801 0.0245975837
#>  8:       DHS_1000bp 0.0217980795 0.048365570 0.1014897579 0.0217980795
#>  9:   Matches_1000bp 0.0115411087 0.015036058 0.0512104283 0.0115411087
#> 10:         DHS_20bp 0.0065613470 0.032692689 0.0270018622 0.0065613470
#> 11:    Matches_400bp 0.0048036903 0.007917049 0.0270018622 0.0048036903
#> 12:         CNS_20bp 0.0045063455 0.029705580 0.0270018622 0.0045063455
#> 13:              CDS 0.0034368035 0.032124664 0.0186219739 0.0034368035
#> 14:         Promoter 0.0030661531 0.017026684 0.0139664804 0.0030661531
#> 15: ProximalPromoter 0.0017786475 0.004499411 0.0074487896 0.0017786475
#> 16:            X3UTR 0.0016817976 0.028938733 0.0111731844 0.0016817976
#> 17:       Downstream 0.0014937469 0.007314459 0.0074487896 0.0014937469
#> 18:           Intron 0.0002022588 0.003336675 0.0009310987 0.0002022588



#> 
#> Call:
#> roc.default(response = ts_label, predictor = xgbpred)
#> 
#> Data: xgbpred in 909 controls (ts_label 0) < 934 cases (ts_label 1).
#> Area under the curve: 0.8771
#> 
#> Call:
#> roc.default(response = ts_label, predictor = test$matchLogPval)
#> 
#> Data: test$matchLogPval in 909 controls (ts_label 0) > 934 cases (ts_label 1).
#> Area under the curve: 0.6425
#> $rect
#> $rect$w
#> [1] -0.5087035
#> 
#> $rect$h
#> [1] 0.2050633
#> 
#> $rect$left
#> [1] 0.7543517
#> 
#> $rect$top
#> [1] 0.1650633
#> 
#> 
#> $text
#> $text$x
#> [1] 0.6337134 0.6337134
#> 
#> $text$y
#> [1] 0.09670886 0.02835443
#> 
#> 
#> NULL



4. predictTFBS()  to predict the targets of CCA1 in roots of Arabidopsis thaliana with a given prediction score threshold (default = 0.5).

CCA1.predictions.roots <- predictTFBS(CCA1model, CCA1data.roots)
head(CCA1.predictions.roots)
#>    seqnames start   end width strand  transcript prediction.score   TF

#> 1:        1  3081  3088     8      + AT1G01010.1        0.7871000 CCA1

#> 2:        1 15408 15415     8      + AT1G01030.2        0.8014211 CCA1

#> 3:        1 15499 15506     8      + AT1G01030.2        0.8301628 CCA1

#> 4:        1 38293 38300     8      + AT1G01060.5        0.6774676 CCA1

#> 5:        1 49340 49347     8      + AT1G01090.1        0.6646637 CCA1

#> 6:        1 59179 59186     8      + AT1G01120.1        0.9512815 CCA1

The output is a data.table  indicating for each predicted binding site: * the coordinates (‘ seqnames ’ = chromosome name, ‘ start ’ and ‘ end ’=

start and end on the chromosome), the width (‘ width ’) and the orientation of the predicted binding sites (‘ strand ’); * the name of the potential

transcript targets, ‘ transcript ’ (the transcript whose the transcription start is the closest); * the prediction score ( prediction.score ) output by

the model (comprised between the minimum score threshold and 1); * the name of the related transcription factor ( TF ).

Optionally, the data.table  might include the annotations of the predicted binding sites with the predictive features. To obtain this information, call

predictTFBS()  while setting show_annotations = TRUE .

CCA1.annotations.predictions.roots <- predictTFBS(CCA1model, CCA1data.roots, show_annotations = TRUE)
head(CCA1.annotations.predictions.roots)

4.3. Manipulate the predictions
4.3.1. Filter the predictions

It is possible to further filter the predicted binding sites with simple manipulations of the data.table  output by predictTFBS() , according for

instance to the related transcription factor (here, we considered only CCA1 but we could have obtained predictions for multiple transcription factors),

the potentiel target or the predictive features, the prediction score or the predictive features.

As a first example, we will verify if there are predicred binding sites on AT3G46640, which is a known target of CCA1.

OnAT3G46640 <- CCA1.predictions.roots[grep(pattern = "AT3G46640", CCA1.predictions.roots$transcript),]
print(OnAT3G46640)
#>    seqnames    start      end width strand  transcript prediction.score   TF

#> 1:        3 17182990 17182997     8      + AT3G46640.1        0.9811640 CCA1

#> 2:        3 17183484 17183491     8      + AT3G46640.2        0.5947698 CCA1

#> 3:        3 17182972 17182979     8      - AT3G46640.1        0.9914682 CCA1

We can observe that, as expected, two binding sites have been predicted, with very high prediction scores (almost 1, the maximum).

As a second example, we will select only the binding sites that overlap a conserved non-coding element (CNS). To do so, we will need to consider the

data.table  obtained with predictTFBS()  with the option show_annotations = TRUE . We will put as condition that the feature CNS_20bp
(here, the percentage of coverage by CNS of the windows of 20bp centered on the predicted binding sites) is superior to 0. Such an approach can be

meaningful because the phylogenetic footprint is a good indicator of functionality (regulatory role) of the binding sites (Rister et al., 2010), as is the

location on a proximal promoter (Li et al., 2019). The model does not take indeed into account whether the recruitment of the transcription on a

predicted binding site is likely to impact or not the expression of the target gene.



OnCNS <- CCA1.annotations.predictions.roots[CCA1.annotations.predictions.roots$CNS_20bp > 0,]
head(OnCNS)
#>    seqnames  start    end width strand matchScore matchLogPval ProximalPromoter Promoter X5UTR CDS Intron X3UTR Do

wnstream  ClosestTTS

#> 1:        1   9806   9813     8      + 0.09623764    -3.267970                0        1     0   0      0     0     

0 AT1G01030.1

#> 2:        1  15499  15506     8      + 0.00000000    -3.203460                0        1     0   0      0     0     

0 AT1G01030.2

#> 3:        1  79725  79732     8      + 0.09111956    -3.236051                0        0     0   0      0     0     

0 AT1G01180.1

#> 4:        1  99718  99725     8      + 0.09111956    -3.236051                1        1     0   0      0     0     

0 AT1G01230.1

#> 5:        1 185091 185098     8      + 1.00000000    -4.185231                0        0     1   0      0     0     

0 AT1G01500.1

#> 6:        1 201739 201746     8      + 0.27576754    -3.461408                1        1     0   0      0     0     

0 AT1G01550.1

#>    DistToClosestTTS  transcript DistToClosestTSS DHS_20bp  DGF_20bp CNS_20bp  DHS_400bp DGF_400bp CNS_400bp Matche

s_400bp DHS_1000bp

#> 1:        0.6039303 AT1G01020.1        0.1389307  0.00000 0.0000000     0.30 0.07259040 0.2120800 0.8982456       

0.0 0.09027778

#> 2:        0.0000000 AT1G01030.2        0.0000000  0.43100 0.8737807     0.35 0.44567611 0.5484212 1.0000000       

0.0 0.29930556

#> 3:        0.7756126 AT1G01180.1        0.9758563  0.00000 0.0000000     0.05 0.18923139 0.2576477 0.9754386       

0.4 0.25416667

#> 4:        0.3806117 AT1G01240.4        0.2284879  0.90345 1.0000000     0.35 0.98338280 1.0000000 0.7368421       

0.0 1.00000000

#> 5:        0.0000000 AT1G01500.1        0.2612364  0.00000 0.4088546     0.80 0.79966635 0.7876883 0.5473684       

0.0 0.69444444

#> 6:        0.2975662 AT1G01560.3        0.1922306  0.00000 0.0000000     0.85 0.02214249 0.1084009 1.0000000       

0.4 0.10138889

#>    DGF_1000bp CNS_1000bp Matches_1000bp prediction.score   TF

#> 1: 0.18317423  1.0000000            0.4        0.6007259 CCA1

#> 2: 0.50088702  0.8681542            0.6        0.8405901 CCA1

#> 3: 0.24825024  1.0000000            0.8        0.8159643 CCA1

#> 4: 0.99530390  1.0000000            0.0        0.8792665 CCA1

#> 5: 0.81260488  0.6612576            0.0        0.9718286 CCA1

#> 6: 0.08018213  0.7261663            0.2        0.5928553 CCA1

Noteworthy, the data.table  output by predictTFBS()  can easily be turned into a GRanges  object using the

GenomicRanges::makeGRangesFromDataFrame()  function. This allows the manipulation of the genomic intervals and, for instance, select binding

sites based on genomic coordinates of interest.

Let’s say that we want to select the binding sites located on chromosome 2, from 10000 to 20000bp and chromosome 3, from 30000 to 60000, on

both strands:



library(GenomicRanges)

#Check before how are named the chromosomes in the predictions

levels(CCA1.predictions.roots$seqnames)
#> NULL

#Chromosome 2 is named '2' chromosome 3, '3'

RegionsOfInterest <- GRanges(seqnames = c(2,3),#names of the chromosomes of interest
                             ranges = c(IRanges(start = 10000, end = 20000), 
                                        IRanges(start = 30000, end = 60000)),
                             strand = "*") #indicates that the strand does not matter

OnRegionsOfInterest <- subsetByOverlaps(makeGRangesFromDataFrame(CCA1.predictions.roots, keep.extra.columns = TRUE), 
                                        RegionsOfInterest)
print(OnRegionsOfInterest)
#> GRanges object with 4 ranges and 3 metadata columns:

#>       seqnames      ranges strand |  transcript  prediction.score          TF

#>          <Rle>   <IRanges>  <Rle> |    <factor>         <numeric> <character>

#>   [1]        3 45828-45835      + | AT3G01130.7 0.825993955135345        CCA1

#>   [2]        3 59372-59379      + | AT3G01175.1 0.768293917179108        CCA1

#>   [3]        3 42246-42253      - | AT3G01120.1 0.553467392921448        CCA1

#>   [4]        3 51599-51606      - | AT3G01150.4 0.938434600830078        CCA1

#>   -------

#>   seqinfo: 5 sequences from an unspecified genome; no seqlengths

We can observe that there are three predicted binding sites on the 3:3000-60000 region and none on the 2:10000-20000.

4.3.2. Infer the potential targets of the studied transcription factors in the condition considered

A transcript is considered as a potential target if its transcription start site is the closest to a predicted binding site of a studied transcription factor in

the condition considered. The whole set of potential transcript targets can be found in the column transcript  of the data.table  output by

predictTFBS() , after selecting the binding sites related to the transcription factor of interest (which is necessary to do in the case where you

obtained predictions for several transcription factors).

CCA1.potentialtargets <- CCA1.predictions.roots$transcript[CCA1.predictions.roots$TF=="CCA1"] #Be sure to select the 
transcription of interest

CCA1.potentialtargets <- CCA1.potentialtargets[!duplicated(CCA1.potentialtargets)] #remove the duplicated
head(CCA1.potentialtargets)
#> [1] AT1G01010.1 AT1G01030.2 AT1G01060.5 AT1G01090.1 AT1G01120.1 AT1G01180.1

#> 34840 Levels: AT1G01010.1 AT1G01020.1 AT1G01020.6 AT1G01030.1 AT1G01030.2 AT1G01040.1 AT1G01040.2 AT1G01050.1 AT1G

01050.2 ... AT5G67640.1

If you want to simplify the predictions at the gene level, eliminate the “.[1..9]” part of the transcript names:

CCA1.potentialtargets <- unlist(strsplit(as.character(CCA1.potentialtargets), "[.]"))[seq(1,2*length(CCA1.potentialta
rgets),2)]
CCA1.potentialtargets <- CCA1.potentialtargets[!duplicated(CCA1.potentialtargets)]
head(CCA1.potentialtargets)
#> [1] "AT1G01010" "AT1G01030" "AT1G01060" "AT1G01090" "AT1G01120" "AT1G01180"

Whenever possible, we encourage you to further filter the predicted gene targets based on expression data that allow to assess the regulatory role of

the studied transcription factor(s).

The prediction of the ene targets of a transcription factor can be used to get functional insights of the latter, by performing a Gene Ontolgy or Gene

Sets (as sets of co-expressed or co-regulated genes) enrichment analyses.

4.3.3. Plot the location of the predicted binding sites on a gene of interest

We can vizualize, on a potential gene target of interest, the location and the prediction score of the predicted binding sites of the studied transcription



factors, in the condition considered (here, of CCA1 in roots). Additionally, you can plot the signals of genomic-wide data, such as the DGF, which is a

feature of high predictivity (see below the plot of feature importances). Let’s take as an example again the known target of CCA1 AT3G46640:

plotPredictions(CCA1.predictions.roots,
                imported_genomic_data = imported_genomic_data.roots,
                gene = "AT3G46640",
                genomic_data = "DGF")

 Such plots can help to choose

mutation sites or to compare graphically the potential cis-regulatory landscape of different genes.

5. Customization of the implementation
The package has been thought so that it allows changes in the default implementation.

5.1. Skip the downloading of the data related to gene structures
and/or that of the genome sequence
The functions importGenomicData()  and getTFBSdata()  offer functionalities of downloading of gene structures data (location of the promoter,

coding sequence,… of the transcript models) and genome sequence. This might bring a gain of time and the ensurance that the related data are

correctly input into the workflow. However, access to internet is not always possible, the downloading can take several minutes while the inputting from

source files is instantaneous and custom data might be necessary in some cases (for instance, you might need an old assembly of a genome).

An example of inputting the data entirely from source files is given by the help pages of the functions importGenomicData()  (cf. arguments

genmic_data , tss  and tts ) and getTFBSdata()  (cf. argument genome_sequence ).

We will predict the binding sites of PIF3 and TOC1 in Arabidopsis seedlings based on a toy genome (obtained by random subsetting of the genome of

Arabidopsis).

The location of the 5’untranslated regions (5’UTR), coding sequences (CDS), introns and 3’UTR need to be imported from BED files through the

genomic_data  argument of importGenomicData() . It is important that the vector passed to genomic_data  names the paths to these files with

exactly the following names: “X5UTR”, “CDS”, “Intron” and “X3UTR”. The location of transcription start site (TSS) and transcription termination site

(TTS) are input throught the tss  and tts  arguments of the importGenomicData()  from BED files. In the all the abovementioned files, the intervals

are named in the ‘name’ field according to the name of the treanscript that they compose. It is not necessary to give the location of the promoters,

proxomal promoters and downstream regions as this is calculated automatically based on the location of the TSS and TTS and the lengths of

promoters, proximal promoters and downstream regions that are set throught the arguments promoter_length  (default = 2000bp),

proximal_length  (default = 500bp) and downstream_length  (default = 1000bp) of importGenomicData() .



The genome sequence can be input from a fasta file (that might be compressed) through the genome_sequence  of the getTFBSdata()  function.

#Pay attention to the names of the genomic_data.ex. Use exactly the names "X5UTR", "CDS", "Intron" and "X3UTR" for t

he paths to the files related to the 5'UTRs, CDS, introns and 3'UTRs.

#The system of nomenclature of the transcripts need to be coherent across the different files that are imported.

genomic_data.ex <- c(CE = system.file("extdata/conserved_elements_example.bed", package = "Wimtrap"),
                      DGF = system.file("extdata/DGF_example.bed", package = "Wimtrap"),
                      DHS = system.file("extdata/DHS_example.bed", package = "Wimtrap"),
                      X5UTR = system.file("extdata/x5utr_example.bed", package = "Wimtrap"), 
                      CDS = system.file("extdata/cds_example.bed", package = "Wimtrap"),
                      Intron = system.file("extdata/intron_example.bed", package = "Wimtrap"),
                      X3UTR = system.file("extdata/x3utr_example.bed", package = "Wimtrap")
                     )
imported_genomic_data.ex <- importGenomicData(biomart = FALSE,
                                              genomic_data = genomic_data.ex,
                                              tss = system.file("extdata/tss_example.bed", package = "Wimtrap"),
                                              tts = system.file("extdata/tts_example.bed", package = "Wimtrap"))
TFBSdata.ex <- getTFBSdata(pfm = system.file("extdata/pfm_example.pfm", package = "Wimtrap"),
                           TFnames = c("PIF3", "TOC1"),
                           organism = NULL,
                           genome_sequence = system.file("extdata/genome_example.fa", package = "Wimtrap"),
                           imported_genomic_data = imported_genomic_data.ex)

5.2. Manipulate the genomic data and the datasets of potential
binding sites
The objects output by importGenomicData()  and getTFBSdata()  can be manipulated to customize the predictive genomic features. The output of

importGenomicData()  is a list of GRanges objects that can be individually modified before feeding the getTFBSdata()  function. The ouutput of

getTFBSdata()  is a vector of file paths that encode the dataset of binding sites for each considered transcription factor. The datasets can be

imported in R, modified and re-exported in a tab-separated file before calling buildTFBSmodel

This might especially allow to define features that takes into account the differences of signal between two growth stages, two treatments, two

organs… As an example, we will build a model specific to CCA1 that takes integrates features that calculate the differences between the average DGF

scores extracted on windows of 20bp, 400bp and 1000bp centered on the potential binding sites in the roots and in the seedlings.



tmp.roots <- data.table::fread(CCA1data.roots)
tmp.seedlings <- data.table::fread(CCA1data.seedlings)

tmp.roots <- cbind(tmp.roots,
                       DGF_20bp_diff = tmp.seedlings$DGF_20bp-tmp.roots$DGF_20bp,
                       DGF_400bp_diff = tmp.seedlings$DGF_400bp-tmp.roots$DGF_400bp,
                       DGF_1000bp_diff = tmp.seedlings$DGF_1000bp-tmp.roots$DGF_1000bp)
tmp.seedlings <- cbind(tmp.seedlings,
                       DGF_20bp_diff = tmp.seedlings$DGF_20bp-tmp.roots$DGF_20bp,
                       DGF_400bp_diff = tmp.seedlings$DGF_400bp-tmp.roots$DGF_400bp,
                       DGF_1000bp_diff = tmp.seedlings$DGF_1000bp-tmp.roots$DGF_1000bp)

data.table::fwrite(tmp.roots,
                   "Diff_CCA1_roots.tsv",
                   sep = "\t")

data.table::fwrite(tmp.seedlings,
                   "Diff_CCA1_seedlings.tsv",
                   sep = "\t")

Diff.model <- buildTFBSmodel(c(CCA1 = "Diff_CCA1_seedlings.tsv"), #name the file path ("CCA1=...")
                             ChIPpeaks = c(CCA1 = "example/CCA1_athal_seedlings.narrowPeak"))

Diff.predictions <- predictTFBS(Diff.model, c(CCA1 = "Diff_CCA1_roots.tsv"))

5.3. Use a different algorithm of pattern-matching
It is possible to bypass the step of pattern-matching by indicating directly the location of potential binding sites as a GRanges  object directly to

getTFBSdata()  through the matches  argument. This allows to import, for instance, the results of pattern-matching obtained from tools external to

Wimtrap.

Let’s consider here a set of 1000 potential binding sites defined randomly on the chromosome 1 of Arabidipsis for whic we will assign a random score.

The raw score of the potential binding need to be input in the first metadata column and the log10 of the p-value in the second.

library(GenomicRanges)
RandomPotentialTFBS <- GRanges(seqnames = 1,
                               ranges = IRanges(start = runif(1000, min = 1, max = 30427671),
                                                width = 12),
                               strand = "*")
mcols(RandomPotentialTFBS)[,"matchScore"] <- rnorm(1000, 0.5, 0.1) 
mcols(RandomPotentialTFBS)[,"matchLogPval"] <- -abs(rnorm(1000, 4, 0.05) )
RandomData <- getTFBSdata(matches = c(CCA1 = tmp),
                          imported_genomic_data = imported_genomic_data.seedlings)

5.4. Use a different machine learning algorithm
You can use the buildTFBSmodel()  function to carry out only the steps of labelling, balancing and splitting between a training and validation

datasets by setting the argument xgb_modeling  to FALSE . In that case, you will obtain a list of data.tables  corresponding to the training and the

validation datasets. The training dataset can be easily used with your favorite machine learning algorithm, the ChIP-peak  column defining the target

variable (=1 if the potential binding site is validated by a ChIP-peak; =0 otherwise). When you will obtain your model, you will be able to assess it with

the validation dataset.



CCA1.training.validation.sets <- buildTFBSmodel(CCA1data.seedlings, 
                                                ChIPpeaks = c(CCA1 = "example/CCA1_athal_seedlings.narrowPeak"),
                                                xgb_modeling = FALSE) 
training.dataset <- CCA1.training.validation.sets$training.dataset
validation.dataset <- CCA1.training.validation.sets$validation.dataset

References
Baxter, L. et al. Conserved Noncoding Sequences Highlight Shared Components of Regulatory Networks in Dicotyledonous Plants. Plant Cell 24, 3949–

3965 (2012).

Haudry, A. et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45, 891–898

(2013).

Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045

(2017).

Li, H., Quang, D. & Guan, Y. Anchor: trans-cell type prediction of transcription factor binding sites. Genome Res. 29, 281–292 (2019)

Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, bar030–bar030 (2011).

Nagel, D. H. et al. Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc. Natl. Acad. Sci. 112, E4802–

E4810 (2015).

Rister, J. & Desplan, C. Deciphering the genome’s regulatory code: The many languages of DNA. BioEssays 32, 381–384 (2010).

Thomas, B. C., Rapaka, L., Lyons, E., Pedersen, B. & Freeling, M. Arabidopsis intragenomic conserved noncoding sequence. Proc. Natl. Acad. Sci. 104,

3348–3353 (2007).

Sullivan, A. M., Arsovski, A.A., Lempe, J., Bubb, K.L. et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell

Rep. 8, 2015-2030 (2014).

Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints Using Signatures of

Open Chromatin in Arabidopsis. Plant Cell 24, 2719–2731 (2012).

 


	Wimtrap
	Rivière Quentin qri@hotmail.be
	Matthieu Defrance matthieu.dc.defrance@ulb.be
	Massimiliano Corso, Madalina Ciortan, Nathalie Verbruggen

	1. Description of the package
	2. Installation of Wimtrap
	3. Presentation of the package
	3.1 Functions
	3.2 Inputs and outputs

	4. Example: prediction of the binding sites of CCA1 in the roots of Arabidopsis thaliana
	4.1. Use the carepat() function to apply a pre-built general model
	4.2. Build and apply a CCA1-specific model
	4.2.1 Get the pre-requisites
	4.2.2. Apply the functions defined in the package

	4.3. Manipulate the predictions

	5. Customization of the implementation
	5.1. Skip the downloading of the data related to gene structures and/or that of the genome sequence
	5.2. Manipulate the genomic data and the datasets of potential binding sites
	5.3. Use a different algorithm of pattern-matching
	5.4. Use a different machine learning algorithm

	References

